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“A wealth of information
creates a poverty of attention
and a need to allocate it
Efficiently”
~Herb Simon (Nobel Prize Winner)



Recommender systems: many flavors
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Human Decisions:

Essence of Recommender systems

« Recommender systems aim at predicting
oreferences and ultimately human choice

 Human faced with a decision
— Making a choice among a large set of alternatives

— Relying on preferences:

* Personal knowledge: preferences constructed through past
experience (choices & outcomes experienced in the past)

* Given knowledge: preferences constructed from information
provided

« Human preferences are dynamic and contingent
to the environment.




Premise: Dynamic decision making research may help to build
recommender systems that learn and adapt recommendations
dynamically to a particular user’s experience to maximize benefits and
overall utility from her choices

OQutline:

« Offer a conceptual framework of decision making different from
traditional choice: dynamic decision making

* Present main behavioral results obtained from experimental
studies in dynamic situations
— some initial findings on the dynamics of choice and trust on
recommendations
» Atheory (process and representations) and a computational
model (algorithm) with demonstrated accuracy in predicting
human choice



Static Decisions from Description

WORST QUTCOME

BEST OUTCOME

GOOD OUTCOME

BAD OUTCOME

Which of the following would you prefer?

A: Get S4 with probability .8, SO otherwise

B: Get S3 for sure

Assumptions:

1) Full information: options may
be described by explicit
outcomes and probabillities

2) Unlimited time and resources:
No constraints in the decision
making process

3) Stability: mapping between
choice attributes and utility
remain constant over time
(and across individuals, and
within a single individual).
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Dynamic Decisions from Experience

Judgment
Execution
Recognition —
Decision
Goals Choice

QOutcome
Information about

the state of a
problem

“Exogenous”
events Feedback
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Dynamic Decision
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Series of Decisions

Decisions are
Interdependent: the output of
one becomes the input of the
future ones

Environment changes: either
Independently or
dependently as a result of
previous decisions

Utility of decisions is time-
dependent (according to
when they are made)

Resources and Time are
limited 12
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Memory,
Experience,
Learning
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A Continuum of “dynamics”

Only requirement: A sequence of decisions

Least Dynamic

Most Dynamic

' E v

No changes in the environment
although the environment is
probabilistic, probabilities and
values don’t change over the
course of decisions

Immediate feedback (Action-
Outcome closest in time)

Value is time independent (Time
of the decision is determined by
the decision maker, no penalty for
waiting)

nvironment changes
(Independently and as a
conseguence of the actions of the
decision maker)

Delayed feedback and Credit
assignment problem (Multiple
actions and multiple outcomes
separated in time)

Value is time-dependent (Value
decreases the farther away the
decision is from the optimal time)

) I |

Simple

Complex




Complex dynamic environments: Microworld research
Gonzalez, Vanyukov & Martin, 2005
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Main findings from my research with

Microworlds (summarized in Gonzalez 2012)

 More “headroom” during training helps adaptation

— Time constraints (Gonzalez, 2004): Slow pace training helps
adaptation to high time constrains

— High workload(Gonzalez, 2005): Low workload during training
helps adaptation to high workload
 Heterogeneity of experiences helps adaptation
— High diversity of experiences (Gonzalez & Quesada, 2003;
Gonzalez & Thomas, 2008; Gonzalez & Madhavan, 2011,
Brunstein and Gonzalez, 2011) helps detection of novel items
 Abllity to “pattern-match” and see similarities is
associated to better performance in DDM tasks (Gonzalez,
Thomas and Vanyukov, 2005)
 Feedforward helps future performance of DDM tasks
without feedback (Gonzalez, 2005) 17



A Continuum of “dynamics”

Only requirement: A sequence of decisions

Least Dynamic

Most Dynamic

v E v

No changes in the environment
although the environment is
probabilistic, probabilities and
values don’t change over the
course of decisions

Immediate feedback (Action-
Outcome closest in time)

Value is time independent (Time
of the decision is determined by
the decision maker, no penalty for
waiting)

nvironment changes
(Independently and as a
conseguence of the actions of the
decision maker)

Delayed feedback and Credit
assignment problem (Multiple
actions and multiple outcomes
separated in time)

Value is time-dependent (Value
decreases the farther away the
decision is from the optimal time)
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Choice: Abstract and simple experimental paradigms

Repeated choice Paradigm

(Barron & Erev, 2003)

Fixed number of trials

e T ],
Sampling Paradigm
(Hertwig et al. 2004)
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Make a choice:
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Description-Experience Gap

Barron & Erev (2003); Hertwig, Barron, Weber & Erev (2004)

e Description: e EXperience
.8, $0 otherwise )
B: Get $3 for sure °

Make a final choice:
DEGap: Pmax (A choices) = 36% - Pmax=88% =52

Description: According to Prospect Theory people overweight the probability
of the rare event
Experience: as if people underweight the probability of the rare event

20



Exploration process: a theoretical divide?

_ DE-Gap is due to _
Sampllng Decisions from Experience (DFE) RepeatEd Ch0|ce
. ;}E;‘ilg‘%a rron, Weber & Erey, ?;;iz;egitic;ma} .
Reliance on small | - - - Reliance on recent
samples , : outcomes

ng

Sampli

Make a final choice:

Exploration transitions — A theoretical divide?

Exploration — Exploration -
Exploitation two Exploitation
distinct processes tradeoff

Models often assume Increase selection of
that sampling is best known option

over time

random
21



Gonzalez & Dutt (2011)

 Demonstrate the behavioral regularities between sampling and
consequential choice paradigms:

— Similar Description-Experience(DE)-Gap
— Gradual decrease of exploration over time
— Maximization in choice

— Prediction of choice from memory: Selection of option with the highest
experienced expected outcome during past experience

 Demonstrate that people rely on remarkably similar cognitive
processes in both paradigms:
— People explore options aiming to get the best possible outcome
— Rely on their (faulty) memories (frequency, recency and noise)

* Asingle cognitive model based on Instance-Based Learning Theory
(IBLT; Gonzalez, Lerch, & Lebiere, 2003):
— EXxplains the learning process and predicts choice better than models that

were designed for one paradigm alone (e.g., the winners of the Technion
Modeling competition - TPT) 22



Human data sets

6 problems

Technion Prediction
Tournament (TPT)

Erev et al., 2011

Hertwig et al., 2004 Hertwig et al., 2004 Barron & Erev, 2003

N=50

N=100
60 problems
Estimation set

N=100
60 problems
Competition set

N=50

N=100
60 problems
Estimation set

N=100
60 problems
Competition set

N=144

N=100
60 problems
Estimation set

N=100

60 problems
Competition set
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Similar DEGap in Sampling and
Consequential Choice paradigms

6 problems Hertwig et al., 2004 Hertwig et al., 2004 Barron & Erev, 2003
N=50 N=50 N=144
Significant gap for each of - 93 p=01
the 6 problems r=.22p=
Technion Prediction N=100 N=100 N=100
Tournament (TPT) 60 problems 60 problems 60 problems
Erev et al., 2011 Estimation set Estimation set Estimation set
N=100 N=100 N=100
60 problems 60 problems 60 problems
Competition set Competition set Competition set
r=—.53, p=.0004 1S 88 p =0T

T r=-37,p=004 <
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Similar risky choices across DFE paradigms,

but Is exploration similar?

In TPT data sets

* P-risky choices (Estimation and Competition)
— Sampling =0.49 &0.44
— Repeated choice =0.40 & 0.38

« Alternation rate (A-rate) is a measure of exploration. A-rate
(Estimation and Competition)

— Sampling =0.34 & 0.29
— Repeated choice =0.14 & 0.13

« Alternation correlations between sampling and consequential choice over time
— r=.93, p=.01 Estimation set
— r=.89, p=.01 Competition set

25



Exploration decreases over time

Gonzalez & Dutt, 2011

Repeated Choice Sampling
1 L.
0.9 - 0.9
8? . 0.8 -
7 0.7 -
6 problems g 06" @ 06 -
. S 05 - S 05 -
Hertwiget <4 < o4 .
al., 2004 0.3 - 03 -
0.2 - 0.2 -
0.1 - 0.1 -
0 0
2 2 42 62 8 102 122 142 162 182 20 2 12 2 32 42 5 62 72 8 92
Number of Trials 0 Number of Samples
1 - 1 -
Technion 0.9 - 0.9 -
.. 0.8 - 0.8 -
Prediction 0.7 - 07 -
206 - '
Tournament © g5 - £ 06~
< 04 - = 051
(TPT) 0.3 - < 04 -
Erev et al., 0.2 - 0.3 1
0.1 - 02 -
2011 0 0.1 -
2 22 42 62 82 100 )
Number of Trials 20 12 2 32 42 52 62 72 8 9

Number of Samples



Decreased exploration over time occurs for

most individuals

Gonzalez & Dutt, 2012

Hau et al. (2008) Experiment 3
0.6

0.5 -

0.4 -

A-rate

2 12 22 32 42 52 62 72 82 92

Samples

In first 11 trials A-rate falls 44% and then the
curve flattens to about 19% =2 remarkably
similar to consequential choice

Hau et al. (2008) Experiment 3

A-rate: Final 9 samples

0 01 02 03 04 05 06 07 08 09 1

A-rate: First 9 samples

Initial and final A-rates at the individual level.
4/40 (10%) kept their initial and final A-rates
constant; 12/40 (30%) increased A-rate; and
24/40 (60%) fell below the diagonal, decrzgased
A-rate



The longer individuals sample, the more they

decrease exploration

(Gonzalez & Dutt, 2012)

TPT Dataset: 6-sample Group

0.4
A-rate: First 2 samples

0 02 0.6 0.8 1

TPT Dataset: 10-sample Group

10-sample Group

0.8 1

06
A-rate: First 3 samples

0 0.2 0.4

TPT Dataset: 18-sample Group

23456 78 9101112131415161718

18-sample Group

. .
.
L ] .. .
& .‘.. o o
I
* - ] «® ®
]
- v 8 %,
0] T & — .
0 0.2 0.4 0.6 0.8 1

A-rate: First 6 samples



Choice Is predicted by maximization from

experience
Gonzalez & Dutt, 2011; Gonzalez & Dutt, 2012; Mehlhorn et al., 2014

 |In Hau et al.'s data (2008)
— Maximization during sampling & Maximization at choice (r(38) =
0.36, p <.05).

— 60% of the choices predicted by maximizing option during
sampling are consistent with final choices.

e In TPT sampling data set
— A positive correlation of Maximization behavior in the three
groups:
* 1(73) =.26, p < .05 for the 6-samples group
e 1(70) = .34, p < .01 for the 10-samples group
e 1(60) = .40, p < .01 for the 18-samples group

— 84% of the choices predicted by the maximizing option during
sampling are consistent with the final choices.

29



Concurrence of Exploration and Maximization In
Decisions from Sampling (Gonzalez & Dutt, under review)

1 _
Maximization

09 -
0.8 -

0.7 -

0.6 -
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0.1 -
0
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Learning in imperfect recommendation systems
(Harman, Odonovan, Abdelzaher, Gonzalez, 2014: Recsys 2014)

Value obtained from
choice

High/Low outcome
from choice

Value obtained from

Accuracy of the
choice

recommender

High/Low outcome

High/Low
from choice

31
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Experiments

 EXxp 1: Learning value (over 200 trials) without recommendations. Each
Condition 100 participants. Conditions represent the probability of
obtaining a high (1) outcome.

— Control condition: 5.5.5.5

— Identify best/worst value:
* Easy: 8.2.2.2/.2.8.8.8
 Difficult: g.4.4.4/.4.7.7.7

— Identify best value among distinct/similar sources:
 Distinct: 2.4.6.8
e Similar: 4.5.6.7

 EXp 2: Learning value with recommendations. Same as Exp. 1, but with
accurate (p=1) or inaccurate (.5) recommendations.

32



Exp. 1:

1.00

0.75

0.50

Choice Proportion

0.25

Control Condition

Control: .5.5.5.5
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Exp. 1: Identify best among distinct/similar sources

Choice Proportion

Best among distinct sources

Choice Proportion

1.00
0.90
0.80
0.70
0.60
0.0
0,40
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0.20
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0,00

Best among similar sources

105
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145

185
193
201
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Summary of behavioral phenomena

Conditional Reinforcement:

Increasingly select actions that led to best
outcomes In similar past experiences

Reduced Exploration:

Decrease exploration of options over time in
consistent environments

Recommender systems:

Recommenders may act as distractions for
numans’ own exploration and search for best value

Humans abandon imperfect recommenders
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"... static decision theories have only a
limited future. Human beings learn, and
probabllities and values change; these
facts mean that the really applicable kinds
of decision theories will be dynamic, not
static" Edwards (1961, page 485).

Ward Edwards (1927-2005) 59



Dynamic Decision Theories: Learning

Theories

* Psychology is full of learning theories!
— Toward an instance theory of automatization (Logan, 1988)

— The use of specific instances to control dynamic systems (Dienes & Fahey,
1995)

— Learning in Dynamic Decision Tasks (Gibson, Fichman & Plaut, 1997)
— Case-Based Decision Theory (Gilboa & Shmedlier, 1995)

* Instance-Based Learning Theory (IBLT) (Gonzalez, Lerch and Lebiere,
2003)

— Descriptive account of the cognitive structures and learning processes

involved in human decision making in dynamic environments (Gonzalez et
al., 2003)

— IBLT characterizes learning in dynamic tasks by storing a sequence of

iInstances, “Situation-Decision-Ultility” triplets, produced by experienced
events in memory.

40



Dynamic Decision Theory
Instance-Based Learning Theory (IBLT)

(Gonzalez, Lerch, & Lebiere, 2003)

* Proposes a generic DDM

cognitive process:

Recognition, Judgment, Choice,
Execution, Feedback

 Formalizes Typialiy
representations: Judgement

» |nstance: tripled: Situation,

Knowledge of results

Feedback

Recognition

Blending
SDUs/

Heuristic
-—

Memory:SDU

DeCiSion, Ut|l|ty (SDU) Current best SDU
 Relies on mathematical Necessity
mechanisms proposed by ACT-R W SDU/D
Decision

 Represents processes

computationally: to provide

concrete predictions of human
behavior in various task types



IBL model of choice

1. Each experience combination is
created as an instance in memory
(e.g. S-10; P-8; S-1; P-5; S-5) when
the outcome is experienced

2. Each instance has a memory
“activation” value based on
frequency, recency, similarity, etc.

3. The probability of retrieving an 10
instance from memory depends on 10
activation 8
4. For each option, memory instances 1
are “blended” to determine next
choice by combining value and 5
probability >

5. Choose the option with the e
maximum blended value

42



A formalization of an IBL model of binary-

choice (Gonzalez & Dutt, 2011; Lejarraga et al., 2012)

1. Each Instance has an Activation: simplification of ACT-R’s mechanism (Anderson &
Lebiere, 1998): \

/ (4 —
'qf.r:gﬂ( Z (f_f::'_d) + r:r.i'ﬂ( )

W ELL e t— 1)

Frequency Recency
Free parameters: d : high d-> More recency Noise: o: high s -> high variability

2. Each Instance has a probability of retrieval is a function of memory Activation (A) of that
outcome relative to the activation of all the observed outcomes for that option given by:

J’-[ ES
e 't —
Pie=—a- T=0v2a
E e g
j
3. Each Option has a Blended Value that combines the probability of retrieval and outcome
of the instances: i

V; = 2 B

4. Choose the option with the highestzéxperienced expected value (“blended” value)



Robustness of the IBL model’s prediction

* Inthree different tasks: Repeated choice; Probability Learning; Repeated
choice with non-stationary probabilities (Lejarraga et al., 2012)

* Across two different paradigms: sampling and repeated choice (Gonzalez & Duitt,
2011)

* In a market entry task (Gonzalez, Dutt & Lejarraga, 2011)

« To demonstrate how decision “biases” disappear when making decisions from
experience (Hartman & Gonzalez, 2014; Mehlhorn et al., 2013; Gonzalez & Mehlhorn, 2014)

 To demonstrate the short and long-term dynamics of cooperation in the

Prisoner’s dilemma and other social dilemmas (Gonzalez, Ben-Asher, Martin & Gonzalez,
2014)

e Learning with imperfect recommendations (Harman, Abdelzaher, Gonzalez, in prep)

44



0.00

1.00

=]
in
=]

0.00

1.00

0.00

1.00

0.00

1.00

0.00

pl.8.7,0.06,22.8; 21.4

p2.-2.2,0.09, 9.6; 8.7

p3.-2,0.1,-11.2; 95

pd. 14,002, 91; 9

p5.-09,0.07, 4.8; 4.7

p6.-4.7,091,-18.1; 6.8

SD: 227

SD: 2.00

SD: 3.30

SD: 0.03

SD: 015

SD: 352

h‘*"’;‘_—g;:-:

‘-‘h._.__.

p7.-9.7,0.06, -24.8; -24.2

p8.-5.7, 0.96, -20.6; 6.4

p9.-5.6,0.1,-19.4; -18.1

pl0.-2.5,0.6,-5.5; -3.6

pll.-5.8,0.97,-16.4; -6.6

pl2.-7.2,0.05, -16.1; -15.6

SD: 0.50

SD: 7.64

[t g

SD: 4.16

SD: 0.01

SD: 2.24

SD: 0.05

———acgeony

e e

T —————

N&-ﬂ_.

pl3.-18,0.93, 6.7; 2

pld. 64,02, 22.4; 18

pl5.-3.3,0.97,-10.5; 3.2

pl6.-9.5,0.1,24.5; 235

pl7.-2.2,092, 11.5; 3.4

plS.-1.4,0.93, 4.7; 1.7

SD: 3.36 SD: 0.08 SD: 5.17 SD: 11.34 SD: 8.24 SD: 26.11
PO ——a, -~
ST gy 4 Y = "-..'L"::: hat DT EEEE [T
- _=

————

pl9. 8.6, 0.1, 26.5; 26.3

p20.-6.9, 0.06, -20.5; -20.3

p21.18,0.6, 4.1; 1.7

p22.9,0.97,6.7; 9.1

p23.5.5,0.06, 3.4; 2.6

p24.1,0.93,-7.1; 0.6

SD: 134

® P
s Py

SD: 9.01

SD: 741

8D: 3.99

SD: 569

——— —

STt

-~
-
. STy ey

§D: 22

v

p25.3,0.2,-1.3; -0.1

p26.8.9,0.1,-1.4; 0.9

p27.9.4,0.95, 6.3; 8.5

p28.3.3,0.91, 3.5 2.7

p29.5,0.4,6.9; 3.8

p30.2.1,0.06, 9.4; 8.4

SD: 1.27

SD: 5.11

SD: 16.80
.----.—---.—---

SD: 5.90
emz=f--=F---e
== 3

SD: 1.04

SD: 14.02

:-\--l‘-———o—o

P S i

p31.0.9,0.2,-5; -5.3

p32.9.9,0.05, -8.7; -7.6

p33.7.7,0.02,-3.1; -3

p34.2.5,0.96,-2; 2.3

p35.9.2,091,-0.7; 8.2

p36.2.9, 0.98,-9.4; 2.9

SD: 0.09

SD: 0.07

SD: 560
————————e

SD: 487
L &=

SD: 2.52

~———

———

$=="3

p37.2.9,0.05, -6.5; -5.7

p38.7.8,0.99, 9.3; 7.6

p39.6.5,0.8, -4.8; 6.2

p40.5,0.9,-3.8; 4.1

p41.20.1,0.95, 6.5;19.6

p42.5.2,0.5,1.4; 5.1

SD: 7.23

SD: 3.72

Pt 2

SD: 5.11

SD: 0.82

SD: 0.82

[ S

SD: 7.19

s ]

L4

———

pd3.12,0.5,2.4;9

p44.20.7,09,9.1;19.8

pd6.22.6,0.4,7.2;12.4

pd7.23.4, 093, 7.6;22.1

p48.17.2,0.09, 5; 5.9

SD: 2.60 SD: 0.18 SD: 2.82 SD: 14.530 SD: 42.07 - SD: 0.04
[T
'y [ T
———ag=a, R —
= :b‘:v—.__‘ .E'"-L—...__. = -

p49.18.9,0.9, 6.7; 17.7

p50.12.5,0.04,4.7; 4.9

pS1.19.1,0.03,4.8;5.2

p52.12.3,0.91,1.3; 12.1

p53.6.8,09,3; 6.7

p54.22.6,03,9.2; 11

SD: 1855 SD: 0.04 SD: 0.00 SD: 0.89 SD: 037 SD: 5322
it e TP, = -*-..,_h-._-‘. .._--f"".—--‘

p35.6.4,0.09, 0.5; 1.5

ps6.15.3, 0.06,5.9; 7.1

pS7.5.3,09,1.5, 4.7

p58.21.9,0.5,8.1;12.6

pS9.27.5,0.7,9.2; 21.9

p60.4.4,02,0.7; 1.1

SD: 5.73

SD: 0.16

SD: 1535

il sl

SD: 8§99

SD: 11.09

SD: 0.93

& —~g===r=== ———— -
== N —3r——"3 L LT T | SEPE Y
g -y *h-.____.__'
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

== Observed Rrate
=@— B[ predictions

(Lejarraga, Dutt & Gonzalez, 2012)

Block of 25 trials
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Pmax at final choice in Pmax during repeated

sampling paradigm consequential choice
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A-rate during sampling
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IBL Model predictions
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Summary of behavioral phenomena

Conditional Reinforcement:

Increasingly select actions that led to best
outcomes In similar past experiences

Reduced Exploration:

Decrease exploration of options over time in
consistent environments

Recommender systems:

Recommenders may act as distractions for
numans’ own exploration and search for best value.

Humans abandon imperfect recommenders
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IBL model captures human cognitive

processes, but there are some challenges:

* Risk tolerance and sequential accumulation of information
 Complex interrelationships of events over time
 Complex similarities among objects

 Feedback delays: processing of cause-effect relationships

 The positive linear causality effect: positive correlations are
easier to comprehend than their negative counterparts

e Credit assignment problem: one to one cause-effect
relationships
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Scaling up IBL models and Experimental Paradigms to increased dynamic
complexity

Least Dynamic Most Dynamic

' E v

. ] nvironment changes
No changes in the environment

though th _ . (Independently and as a
alt oug _ t.e enV|ron.rT1.ent 1S consequence of the actions of the
probabilistic, probabilities and

decision maker)
values don’t change over the

course of decisions Delayed feedback and Credit

ﬁ assignment problem (Multiple

actions and multiple outcomes
separated in time)

Immediate feedback (Action-
Outcome closest in time)

Value is time independent (Time
of the decision is determined by
the decision maker, no penalty for
waiting)

N, |

Simple Complex

Value is time-dependent (Value
decreases the farther away the
decision is from the optimal time)
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