Recommender Systems and Decision Making in the Social Media World

Ido Guy
Yahoo Labs
Israel
High-Level Outline

- Social Recommender Systems – Overview
 - Content Recommendation
 - People Recommendation
- Recommending Social Media Content to Community Owners (Ronen et al., SIGIR 2014)
- Islands in the Stream: Item Recommendation within an Enterprise Social Stream (Guy et al., SIGIR 2015)
Web 2.0 and Social Media

- **Web 2.0 [Oreiley03]**
 - It’s all about **people**
 - Joining online communities
 - Connecting to each other on social networks
 - Creating content as in wikis and blogs
 - Annotating content with tags, comments, ratings

- **Social Media**
 - Refers to Web 2.0 sites that allow users to **share and interact**
 - Characterized by
 - User-generated content (e.g., tags)
 - User-centered design
 - Social networks and online communities
Top 10 Sites on the Web (Alexa.com)

1. Google
2. Facebook
3. YouTube
4. Baidu
5. Yahoo
6. Amazon
8. Qq
9. Twitter
10. Taobao
Social Overload

- **Facebook** – largest social network site
 - 1,500,000,000 users, half log in every day
 - Over 1B on mobile
 - 190,000,000,000 online “friendships”
 - 74,200,000 pages
 - 4,500,000,000 “likes” per day

- **YouTube** – largest video sharing site
 - 1,000,000,000 users
 - 4,250,000,000 views per day
 - 10,000,000 video hours uploaded per month

- **Twitter** – largest microblogging site
 - 316,000,000 active users
 - 500,000,000 tweets per day
 - 76,000,000 followers of most popular user
Social Overload

Information overload – blogs, microblogs, forums, wikis, news, bookmarked web pages, photos, videos, …

Interaction overload – friends, followers, followees, commenters, co-members, voters, “likers”, taggers, …
Decision Making by Social Media Users

- What content (blogs, wikis) to read?
- What channels to follow?
- Which social networks to use?
- Who to be friends with?
- Who to follow?
- What groups to join?
- What content to produce?
- How to annotate own and other’s content?
Social Recommender Systems

- Recommender Systems that target the social media domain

- Aim at coping with the challenge of social overload by presenting the most attractive and relevant content

- Also aim at increasing adoption and engagement
Recommender Systems and Social Media

Social media introduces new types of data and metadata that can be leveraged by RS (tags, comments, votes, explicit social relationships).

RS can significantly impact the success of social media, ensuring each user is present with the most relevant items that suit her personal needs.
Content Recommendations

- Video recommendation
 [Davidson et al., RecSys ’10]

- News recommendation
 - Digg [Lerman, ICWSM ’07]
 - Google reader [Liu et al., IUI ’10]

- Question recommendation
 [Szpector et al., WWW ’13]

- Blog recommendation
 [Arguello et al., ICWSM ’08]
Enhancing CF with Friends

- The user’s network of friends and people of interest becomes more accessible in the Web 2.0 era (Facebook, LinkedIn, Twitter,...)
- Such social relationships can be very effective for recommendation compared to traditional CF
 - Recommendation from people the user knows and thus can judge
 - Spare explicit feedback such as ratings
 - Effective for new users
- Various works have shown the effectiveness of friend-based recommendation over CF, e.g.:
 - Friends as trusted recommenders for movies [Golbeck, 2006]
 - Club recommendation within a German SNS - Collaborative Filtering vs. Social Filtering [Groh & Ehmig, Group 2007]
Mixed Social Media Item Recommendations

Personalized Recommendation of Social Software Items based on Social Relations [Guy et al., RecSys ’09]

- Social network-based recommendations of blogs, bookmarks, and communities
- Key distinction:
 - Familiarity: co-authorship, org chart, direct connection or tagging, etc.
 - Similarity – co-usage of tags, co-bookmarking, co-membership, co-commenting
- Explanations – showing the “implicit recommender” and her relationship to the user and item

\[
RS(u,i) = e^{-\alpha t(i)} \cdot \sum_{v \in N^T(u)} S[u,v] \sum_{r \in R(v,i)} W(r)
\]
Mixed Social Media Item Recommendations

- Evaluation combines a user survey and a live system
- Recommendations from familiar people are significantly more accurate than recommendations from similar people – 57% to 43% interest ratio
- Similar people yield more diverse, less expected items
- Explanations have an instant effect increasing interest in recommended items
Mixed Social Media Item Recommendations

- Social media recommendation based on people and tags [Guy et al., SIGIR ’10]
- Underlying social aggregation system – SaND
- 5 item types: blogs, bookmarks, communities, wikis, files
- First comprehensive study to compare people-based and tag-based recommenders
- Outgoing and incoming tags

\[
RS(u,i) = e^{-\alpha d(i)} \cdot [\beta \sum_{v \in N(u)} w(u,v) \cdot w(v,i) + (1-\beta) \sum_{t \in I(u)} w(u,t) \cdot w(t,i)]
\]
Mixed Social Media Item Recommendations

- Direct tag evaluation
 - 65 participants rated 16 tags each
 - Hybrid tags most accurate
 - Incoming slightly outperform outgoing
 - Indirect are least effective

- Large-scale user study
 - 412 participants rated 16 items each
 - All personalization methods outperform popularity
 - Tag-based significantly outperforms people-based in terms of accuracy
 - Yet has less diversity, more expected results, and less effective explanations
 - Hybrid combines the good of both worlds
 - Reaches 70:30 interest ratio for first 16 items
Tag Recommendation

- Adding terms (tags) to objects by the public provides additional contextual and semantic information to various resources:
 - Web pages (e.g. Delicious)
 - Academic publications (e.g. CiteILike)
 - Multimedia objects (e.g. Flickr, Last.Fm, YouTube)

- External tags are useful for many applications
 - search/browse, classification, tag-cloud representation, query expansion

- Tag Recommendation: - recommend appropriate tags to be applied by the user per specific item annotation
 - assist the user in the tagging phase
 - reduce undesired noise in the aggregated folksonomy
DMRS 2015
Tag Recommendation Approaches

- **Popular:**
 - Recommend the most popular tags to the user
 - Popular tags already assigned for the target item (Golder 2005)
 - Frequent tags previously used by the user
 - Tags co-occurred with already assigned tags (Sigurbjornsson 2008)

- **Collaborative Filtering:**
 - Recommend tags associated with “similar” items
 - Recommend tags given by “similar” users

- **Hybrid:**
 - Recommend tags given by similar users to similar items
 (Symeonidis08, Rendle10, Carmel 10)
Content-based tag recommendation

- Recommend keywords/phrases from the item’s associated text (content, anchor-text, meta data, etc.)
 - e.g. terms with highest \(tf-idf \) score

- Analyze mutual relationship between content and tags
 - Recommend tags that have the highest co-occurrence with important keywords
 - Language modeling approach (Givon 2010):
 - Estimate the joint tag and keyword probability distribution.
 - This provides an estimation that a given item will be annotated with certain tags, given a background collection of annotated items
Graph-based approaches

- The FolkRank algorithm (Hotho 2006):
 - a resource which is tagged with important tags by important users becomes important
 - The same holds, symmetrically, for tags and users
- We have a graph of connected vertices (resources, users, tags) which are mutually reinforcing each other by spreading their weights
- Graph nodes are scored by random walk techniques:

\[
\vec{w} = d \cdot A \cdot \vec{w} + (1 - d) \cdot \vec{p}
\]

- \(w\) – a weight vector over nodes
- \(A\) – a row-stochastic matrix of the graph
- \(p\) - preference vector over the nodes

- For tag recommendation, return the top ranked tags, while setting \(p\) to bias the desired pair of user and resource
Personalized Community Recommendation

- Collaborative filtering for Orkut communities: discovery of user latent behavior [Chen et al., WWW ‘09]

- Personalized community recommendation using CF of two types
 - Association rule mining (ARM) – association between communities shared between many users: users who join X typically join Y
 - Latent Dirichlet Allocation (LDA) – user-community co-occurrences using latent aspects (topics): x is related to y through a semantic feature, e.g., “baseball”
 - Users=docs, communities=topics, membership=co-occurrence
 - Per-topic distribution of users and communities
Personalized Community Recommendation

- Orkut membership data: 492K users, 118K communities
- Top-k recommendation: withhold 1 community the user has joined with k-1 random communities, obtain rank (k=1001)
- ARM is better when recommending lists of up to 3 communities,
- LDA is consistently better when recommending a list of 4 or more
- In general, LDA ranks communities better than ARM
- LDA is parallelized to improve efficiency

DMRS 2015
Personalized Community Recommendation

- Flickr group recommendation based on tensor decomposition [Zheng et al., SIGIR ‘10]
- Group Proximity Measure for Recommending Groups in Online Social Networks (Saha & Getoor, SNA-KDD ‘08)

- From LinkedIn Blog (“groups you may like”):
 - Building a virtual profile per group by selecting the most representative features of group members using Information Theory techniques like Mutual Information and KL Divergence.
 - Mapping user’s attributes to group’s virtual profile
 - Adding more recommendations based on CF
Social Matching

- Social matching: A framework and research agenda [Terveen & Mcdonald, 2005]

- Social matching systems = recommender systems that recommend people to each other
 - Must reveal some amount of personal information
 - Privacy, trust, reputation, interpersonal attraction have greater importance
 - Interaction overload vs. information overload
People Recommendation

- Relationship type
 - Recommending familiar people
 - Recommending interesting people
 - Recommending strangers

- Relationship lifecycle
 - Regular vs. ad-hoc

- Recommendation technique
 - Content-based
 - Graph-based
 - Interaction-based
Recommending People to Connect with

- Do You Know? Recommending People to Invite into Your Social Network [Guy et al., IUI ’09]

- Recommendation in the enterprise based on the following signals:
 - Org chart relationships
 - Paper and patent co-authorship
 - Project co-membership
 - Blog commenting
 - People tagging
 - Mutual connections
 - Connection in another SNS
 - Wiki co-editing
 - File sharing

- Rich and detailed “evidence”
Recommending People to Connect with

- Evaluation based on the Fringe enterprise SNS
- Dramatic increase in the number of invitations sent and users sending invitations
 - “I must say I am a lazy social networker, but Fringe was the first application motivating me to go ahead and send out some invitations to others to connect”
- Evidence increases users’ trust in the system and makes them feel more comfortable
 - “If I see more direct connections I’m more likely to add them […] I know they are not recommended by accident”
- Substantial increase in friends per user
- Sharp decay in usage over time
 - Excitement drops, connections exhausted

<table>
<thead>
<tr>
<th>DYK</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td># of users</td>
<td># of invitations</td>
</tr>
<tr>
<td>6287</td>
<td>73088</td>
</tr>
<tr>
<td>2078</td>
<td>10548</td>
</tr>
</tbody>
</table>

![Graph of average connections over time](image)
Recommending People to Connect with

- Make new friends, but keep the old: recommending people on social networking sites [Chen et al., CHI ’09]

- Content Matching (CM)
 - Profile entries, status messages, photo text, shred lists, job title, location, description, tags
 - $vu(wi) = TFu(wi) \cdot IDFu(wi)$
 - Cosine similarity of both users’ word vector
 - Latent semantic analysis did not perform better
 • And does not yield intuitive explanations

- Content-plus-Link (CplusL)
 - Hybrid CM + social link
 - Social link: a sequence of 3 or 4 users
 • a connects to b, a comments on b, b connects to a

- Friend-of-Friend (FoF)
 - Based on number of mutual friends
 - One or more recommendations for 57.2% of the users

- Aggregated Relationships (SONAR)
 - Similar to the “Do you know?” algorithm
 - One or more recommendations for 87.7% of the users

DMRS 2015
Recommending People to Connect with

- Evaluation based on the SocialBlue enterprise SNS (“Beehive”)

- Survey with 258 participants
 - CM and CplusL yield mostly unknown people, while FoF and SONAR yield mostly known individuals
 - Content similarity vs. relationships alg.
 - The latter are more accurate overall
 - The former are better at discovering new friends

- Controlled field study with 3,000 users
 - SONAR yields most effective results
 - Combine relationships (at first) and content similarity (when the network grows)?
Recommending People to Connect with

- The network effects of recommending social connections [Daly et al., RecSys ’10]

- FoF is highly biased towards well-connected users, leading to high rec. frequency of the same users

- CM is most diverse and often recommends users with few connections only

- CM and SONAR affect betweenness centrality most significantly

- CM is most biased for same country but least biased for same division

- SONAR substantially increases cross-country and intra-division connections

- Highlight network effects when recommending people?
Stranger Recommendation

- Do you want to know? Recommending strangers in the enterprise [Guy et al., CSCW ’11]

- Recommendation of people who are unknown yet interesting in the organization

- Maybe useful to
 - Get help or advice
 - Reach new opportunities
 - Discover new routes for career development
 - Learn about new assets that can be leveraged
 - Connect with SMEs and influencers
 - Cultivate organizational social capital
 - Grow own reputation and influence within the organization

- Complements recommendation of people to connect with, as those are quickly exhausted over time
Stranger Recommendation

- Method - subtracting the familiarity network from the similarity network
- **Similarity**: common things and places: tags, communities, wikis
- Score based on Jaccard’s index
- Presentation with evidence
- **Two-thirds** of the recommendations are strangers
- Significantly more interesting than a random person
- Out of 9 recommendations, 67% got at least one stranger rated 3 or above
-Exploratory recommendation
 - Low accuracy, high value

DMRS 2015
Recommending People to Follow

- Recommending twitter users to follow using content and collaborative filtering approaches [Hannon et al., RecSys’ 10]

- CB, CF, and Hybrid approaches

- User profiles based on
 - Own tweets
 - Followers’ tweets
 - Followees’ tweets
 - Followers
 - Followees

- Using Lucene to index users by their profile, after applying TF-IDF to boost distinctive terms/users within the profile

Figure 1: The Twittomender System Architecture.
Recommending People to Follow

- Offline Evaluation, 20K users
 - 19,000 training set Twitter users
 - 1,000 test users
 - Create index per profile and predict followees
 - Measure by precision and position
 - Results show trade-off between the two
 - Slight advantage to followers and tweets of followers
 - Hybrid improves results (precision > 0.3)

- Live User Trial, 34 participants
 - Hybrid approach combining all types
 - 30 recommended Twitter users
 - Indicate whom s/he is likely to follow
 - No actual effect
 - On average, 6.9 out of 30