

CENTER FOR WEB INTELLIGENCE

Context Awareness and Adaptation in Recommendation

Bamshad Mobasher DePaul University, Chicago, IL, USA

DMRS Workshop – Oct. 22-23, 2015 – Bolzano, Italy

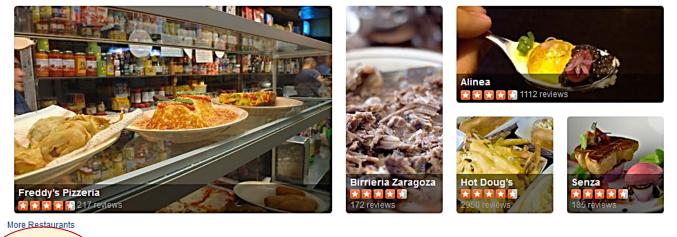
Context in Recommendation

The Best of Yelp

San Francisco New York San Jose Los Angeles Palo Alto Oakland More Cities »

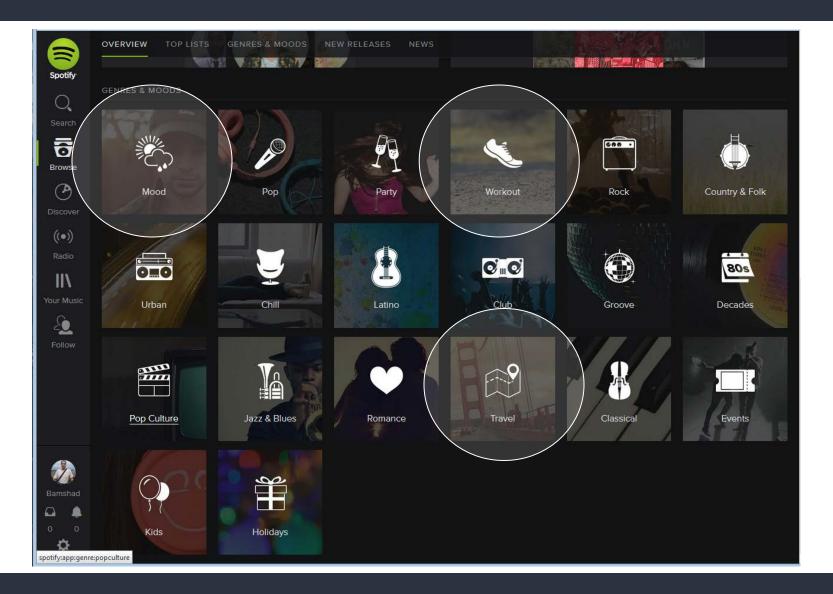
Best Restaurants in Chicago

I Mosaic 🗮 List



Neighborhoods	More Neighborhoods	Prices	
DePaul	Ravenswood	\$ \$\$\$	\$\$\$ \$
Edgewater	River North	\$\$ \$\$	\$\$\$\$
Lakeview Lincoln Park	The Loop University Village	Features	More Features
Lincoln Square Logan Square Near North Side	Uptown West Loop West Rogers Park	Accepts Credit Cards	Order at Counter Take-out
Near West Side	Wicker Park	Good For Kids Good for Groups	Takes Reservations Waiter Service

Context in Recommendation



Context-Aware Recommendation

Watching alone

Watching with a kid

Outline

 General views of context and their relevance to recommendation problem

- Representational versus Interactional view
- Background on Integrating context in recommender systems
- Characterizing the environment for context aware recommendation
- Highlighted Approaches in Context Aware Recommendation
 - Similarity-Based Context-Aware Matrix Factorization
 - Context Adaptation with Dynamic Latent Variable Models
 - Context Adaptation with Exploration/Exploitation

Yong Zheng

Negar (Nikki) Hariri

• Robin Burke

Different Views of Context

 Paul Dourish (2004) distinguished between two views of context

• Representational view:

 Context is information that can be described using a set of "appropriate" variables that can be observed and are distinguishable from features describing the underlying activity

Interactional View of Context

- The scope of contextual features is defined dynamically, and is occasioned rather than static
- Context gives rise to the activity and activity changes the context

Representational View

- Context can be represented as an explicit, enumerated set of static attributes (i.e., it's "extensional")
 - Attributes are predefined based on the characteristics of the domain and environment
 - E.g., time, date, location, mood, device, etc.

Implications:

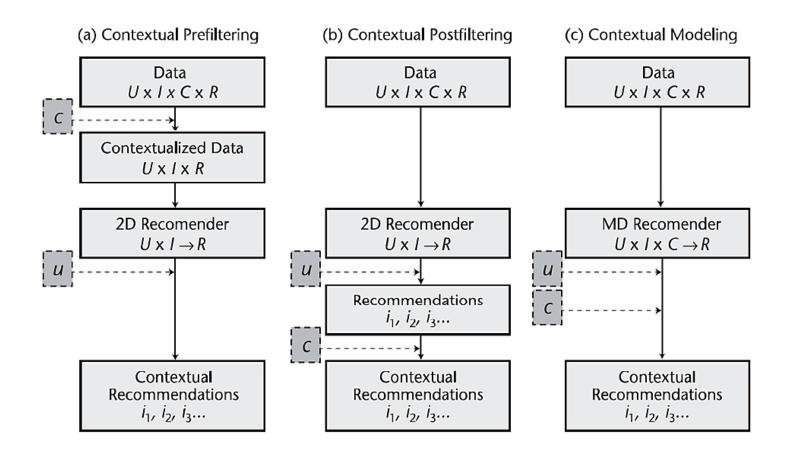
- Relevant contextual variables (and their structures) must be identified at the design stage
- Must identify & acquire explicit contextual information before recommendations are made

Contextual Recommendation in a Representational Framework

User	Movie	Time	Location	Companion	Rating
U1	Titanic	Weekend	Theatre	Family	4
U2	Titanic	Weekday	Home	Family	5
U3	Titanic	Weekday	Theatre	Alone	4
U1	Titanic	<u>Weekday</u>	<u>Home</u>	Alone	?

- Traditional RS: Users × Items → Ratings
- Contextual RS: Users × Items × Context → Ratings

Representational Recommendation Frameworks



From Adomavicius & Tuzhilin, 2008

Interactional View

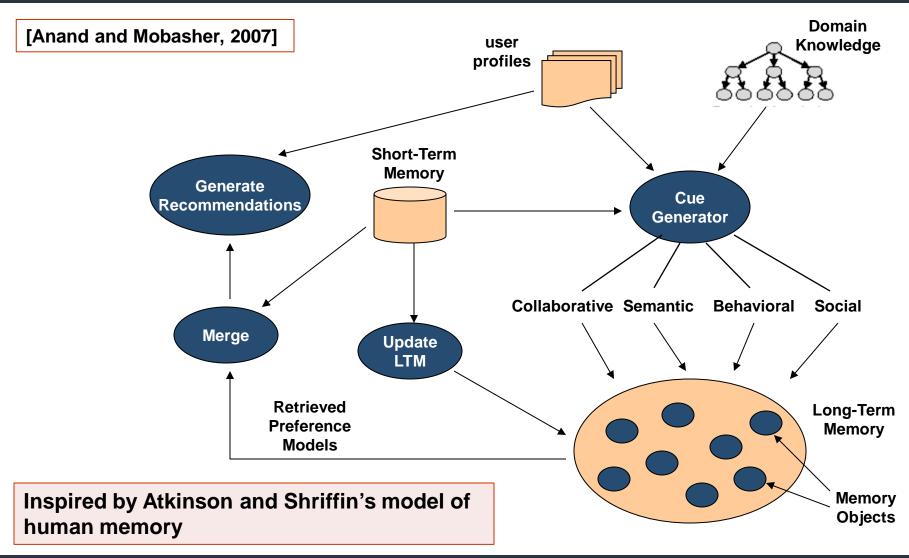
Properties of Context

- Context gives rise to a behaivor that is observable, though context itself may not be (it's "intensional")
 - Exists (usually implicitly) in relation to the ongoing interaction of the user with the system
 - Can be inferred: a stochastic process with *d* states {*c*₁,*c*₂,...,*c_d*} representing different contextual conditions

Context aware recommendation

- Explicit representation of context not as important as
 - recognizing behavior arising from the context
 - adapting to the needs of the user within the context
 - recognizing and adapting to context transitions

An Interactional Framework for Contextual Recommendation



Characterizing the Environment for CARS

How	Knowledge of the RS about the Contextual Factors		
Contextual Factors Change	Fully Observable	Partially Observable	Unobservable
Static	Everything Known	Partial and Static	Latent Knowledge
	about Context	Context Knowledge	of Context
Dynamic	Context Relevance	Partial and Dynamic	Nothing Is Known
	Is Dynamic	Context Knowledge	about Context

Adomavicius, Mobasher, Ricci, and Tuzhilin. Al Magazine, 2011

Contextual Recommendation Algorithms

Extensions of standard collaborative filtering

- CF after Item / user splitting pre-filters
- Differential Context Modeling
- Heuristic distance-based approaches
 - Extend items-item, user-user similarities to include contextual dimensions
 - Requires similarity/distance metrics for various contextual dimensions

Approaches based on matrix/tensor factorization

- Tensor = Users x Items x Contexts; then apply higher-order tensor factorization
- Context-Aware Matrix Factorization
- Factorization Machines
- Probabilistic latent variable context models
- Models based on active learning, e.g., Exploration/Exploitation

Highlighted Approach

Similarity-Based Context-Aware Matrix Factorization

Pedigree:

- Representational context
- Static environment
- Observable context information

Contextual Modeling

Two general approaches for representational contextual modeling

1. Independent Contextual Modeling

Tensor Factorization, ACM RecSys 2010

	0 sei	
Id	Name	Age
101	John	25
102	Bob	18
103	Alice	27
104	Mary	21

Heer

3

5

AB23

XY70

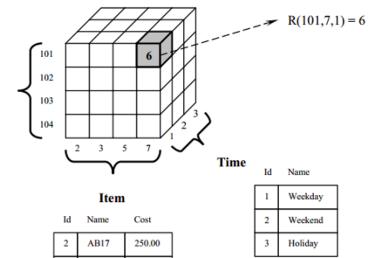
ZZ55

299.95

150.00

115.50

R (RATINGS)



Contextual Modeling

Two general approaches for representational contextual modeling

2. Conditional (Dependent) Contextual Modeling

Deviation-Based Contextual Modeling

Baltrunas, et al., Context-aware Matrix Factorization, ACM RecSys 2011 Zheng, et al., Contextual Sparse Linear Method, ACM RecSys 2014

Similarity-Based Contextual Modeling

Zheng, et al., Similarity-Based Contextual Sparse Linear Method, UMAP 2015 **Zheng, et al., Similarity-Based Contextual Recommendation**, WISE 2015

Matrix Factorization of Ratings Data

User	HarryPotter	Batman	Spiderman
U1	5	3	4
U2	?	2	4
U3	4	2	?
R n movi	es \approx m users	₽ f x ←	$\begin{array}{c} Q \\ n \ movies \\ \end{array}$

- p_u is the user-factor vector
- q_i is the item-factor vector
- The latent factors may represent combinations of features or characteristics of movies and users that explain ratings

Matrix Factorization

Rating Prediction Function: $q_i^T p_u$

Goal: To learn the user and item vectors in order to minimize the regularized squared error on the known ratings in the data

The loss function is: $\min_{q^*, p^*} \sum_{(u,i) \in \kappa} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$

Using gradient descent as the optimizer, the user and item vectors can be updated iteratively:

$$q_i \leftarrow q_i + \gamma \cdot (e_{ui} \cdot p_u - \lambda \cdot q_i)$$

$$p_u \leftarrow p_u + \gamma \cdot (e_{ui} \cdot q_i - \lambda \cdot p_u)$$

Biased Matrix Factorization

Goal: To learn the user and item vectors in order to minimize the regularized squared error on the known ratings in the data

The loss function is:

 $\min_{p^*,q^*,b^*} \sum_{(u,i)\in\kappa} (r_{ui} - \mu - b_u - b_i - p_u^T q_i)^2 + \lambda(||p_u||^2 + ||q_i||^2 + b_u^2 + b_i^2)$

Using gradient descent as the optimizer, the user and item vectors can be generated accordingly.

Context-aware MF (CAMF)

• CAMF was first proposed by Baltrunas et al., 2011

Basic MF: $\hat{r}_{ui} = \overrightarrow{p_u} \cdot \overrightarrow{q_i}$ **Biased MF:** $\hat{r}_{ui} = \mu + b_u + b_i + \overrightarrow{p_u} \cdot \overrightarrow{q_i}$ **CAMF:** $\hat{r}_{uic_{k,1}c_{k,2}...c_{k,L}} = \mu + b_u + \sum_{j=1}^{L} B_{ijc_{k,j}} + \overrightarrow{p_u} \cdot \overrightarrow{q_i}$

CAMF replaced term b_i by $\sum_{j=1}^{L} B_{ijc_{k,j}}$ which denotes the aggregated contextual rating deviation for a specific context and item pair

Similarity-Based CAMF

Basic MF: $\hat{r}_{ui} = \overrightarrow{p_u} \cdot \overrightarrow{q_i}$

Biased MF: $\hat{r}_{ui} = \mu + b_u + b_i + \overrightarrow{p_u} \cdot \overrightarrow{q_i}$

CAMF-Dev: $\hat{r}_{uic_{k,1}c_{k,2}...c_{k,L}} = \mu + b_u + \sum_{j=1}^{L} B_{ijc_{k,j}} + \overrightarrow{p_u} \cdot \overrightarrow{q_i}$ **CAMF-Sim:** $\hat{r}_{uic_k} = \overrightarrow{p_u} \cdot \overrightarrow{q_i} \cdot Sim(c_k, c_E)$

Cκ denotes a context (e.g. {Time=Morning, Location=Home}) in which the item is rated;

CE denotes the unknown or default contexts, e.g. {Time="", Location=""};

The contextual rating prediction amounts to non-contextual predicted rating multiplied by the correlations between C_k and C_E

Similarity-Based CAMF

Similarity measures

- 1. Independent Context Similarity (ICS)
- 2. Latent Context Similarity (LCS)
- 3. Multidimensional Context Similarity (MCS)

Independent Context Similarity

$$Sim(c_k, c_m) = \prod_{l=1}^{L} similarity(c_{k,l}, c_{m,l})$$

For example:

$$C_k = \{\text{Time} = \text{Weekend}, \text{Location} = \text{Home}\}$$

C_m = {Time = Weekday, Location = Office}

The similarity between Ck and Cm is:

sim(Weekend, Weekday) × sim(Home, Office)

Contextual variables are assumed to be independent

Latent Context Similarity

$$similarity(c_{k,l}, c_{m,l}) = V_{c_{k,l}} \bullet V_{c_{m,l}}$$

Each V is a vector over latent factors

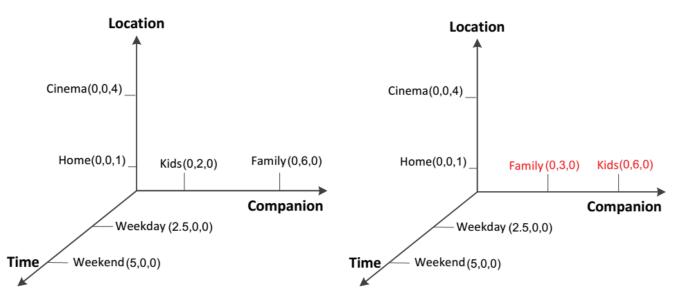
- Learn latent factors for the whole context space
- Represent each context as a vector
- e.g. sim(kids, family) = Vkids · Vfamily

Alleviates Context Sparsity Problem

Example:

Training: <weekend, theater> <weekday, home> Testing: <weekend, home>

Multi-dimensional Context Similarity



Each contextual variable is represented by an axis in multidimensional space; Each value in the variable is represented by a position in specific axis; A set of contextual conditions is thus denoted by a point in the space; The dissimilarity is the Euclidean distance between two points.

Need to learn the position of each contextual condition along its dimension

Learning Process

The general loss function in CAMF-Sim can be described as:

$$\hat{r}_{uic_k} = \overrightarrow{p_u} \cdot \overrightarrow{q_i} \cdot Sim(c_k, c_E)$$

$$M_{\substack{p,q,Sim}}^{inimize} \frac{1}{2} (r_{uic_k} - \hat{r}_{uic_k})^2 + \frac{\lambda}{2} (\|\overrightarrow{p_u}\|^2 + \|\overrightarrow{q_i}\|^2 + Sim^2)$$

Methods for each similarity measure

ICS	LCS	MCS
The similarity (real valued) for each individual pair of context conditions	The vector representation (weights in factors) for each contextual condition	The positions (real values) for each contextual condition

Learning Process

$$\hat{r}_{uic_k} = \overrightarrow{p_u} \cdot \overrightarrow{q_i} \cdot Sim(c_k, c_E)$$

Example (ICS):

$$sim_1 = similarity("Time = Weekday", "Time = N/A")$$

 $sim_2 = similarity("Location = Home", "Location = N/A")$
 $Sim(c_k, c_E) = sim_1 \times sim_2$

$$\underset{p,q,Sim}{Minimize} \frac{1}{2} (r_{uic_k} - \hat{r}_{uic_k})^2 + \frac{\lambda}{2} (\|\overrightarrow{p_u}\|^2 + \|\overrightarrow{q_i}\|^2 + Sim^2)$$

SGD Updates:

$$err = r_{uic_k} - \hat{r}_{uic_k}$$

$$\overrightarrow{p_u} = \overrightarrow{p_u} + \beta \cdot err \cdot \overrightarrow{q_i} \cdot Sim(c_k, c_E)$$

$$\overrightarrow{q_i} = \overrightarrow{q_i} + \beta \cdot err \cdot \overrightarrow{p_u} \cdot Sim(c_k, c_E)$$

$$sim_1 = sim_1 + \beta(err \cdot (\overrightarrow{p_u} \cdot \overrightarrow{q_i}) \cdot sim_2 - \alpha \cdot sim_1)$$

$$sim_2 = sim_2 + \beta(err \cdot (\overrightarrow{p_u} \cdot \overrightarrow{q_i}) \cdot sim_1 - \alpha \cdot sim_2)$$

Data Sets and Metrics

Context-aware data sets are usually limited and small.

	Restaurant	Music	Tourism
Pating Profiles	50 users, 40 items	40 users, 139 items	25 users, 20 items
Rating Profiles	2314 ratings	3940 ratings	1678 ratings
# of contextual dimensions, F	2	8	14
# of contextual conditions, L	7	34	67
Rating Scale	1-5	1-5	1-5

5-fold cross validation

Evaluation metrics:

- Precision: measuring the hit ratio of relevant items;
- MAP: taking the rankings of items into account.

$$MAP@N = \sum_{i=1}^{M} ap@N/M$$
, where $ap@N = \frac{\sum_{k=1}^{N} P(k)}{\min(m, N)}$

Experiments

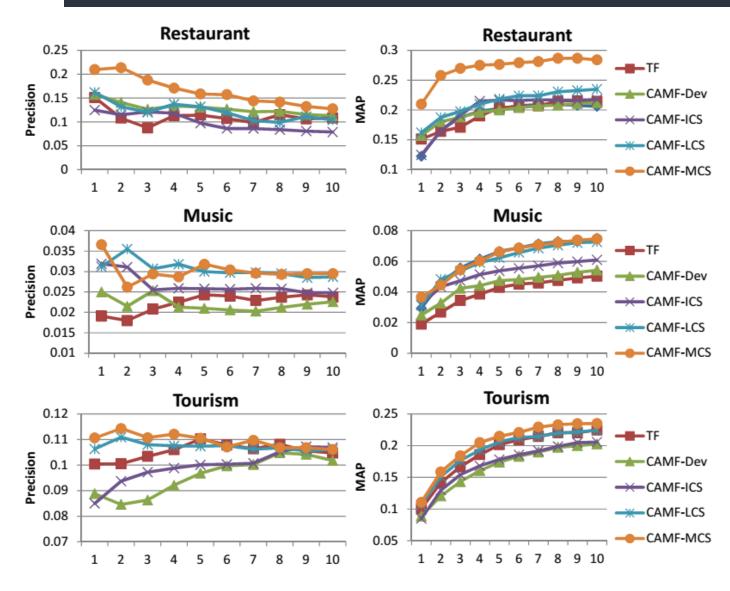
Baseline:

- Tensor Factorization (TF)
- Standard (Deviation-Based) CAMF

• Our Approaches:

- CAMF-ICS
- CAMF-LCS
- CAMF-MCS

Results



X-axis denotes the number of recommended items

Findings

- Similarity-based approach: a more effective representation of contextual differences
 - compared to prior deviation-based approach
- Some CAMF-Sim models always outperform TF and CAMF-Dev
- Representation of similarity matters
 - CAMF-MCS is the often the best model; but computationally expensive
- Sparsity is significant
 - CAMF-LCS > CAMF-ICS

Highlighted Approach

Dynamic Latent Variable Context Models

Pedigree:

- Interactional context
- Dynamic or partially dynamic environment
- Unobservable or partially observable context information

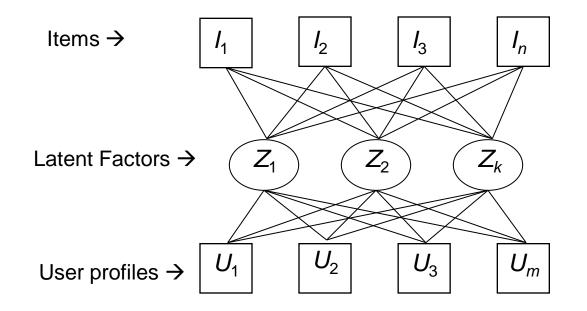
Latent Variable Context Models

Generative approach to modeling user context

Basic assumption:

- users' interactions involve a relatively small set of *latent* contextual states that can "explain" users' behavior at different points during their interactions
- Have been used effectively in applications involving user's performing informational or functional tasks
- Contexts correspond to sets or sequences of tasks/activities and are derived as latent factors from the observed user data

Static Latent Variable Models



$$\Pr(U_i, I_j) = \sum_{z_k} \Pr(U_i) \bullet \Pr(Z_k | U_i) \bullet \Pr(I_j | Z_k)$$

I.e., The preference of a user for different items is encoded in the user's membership in the latent classes

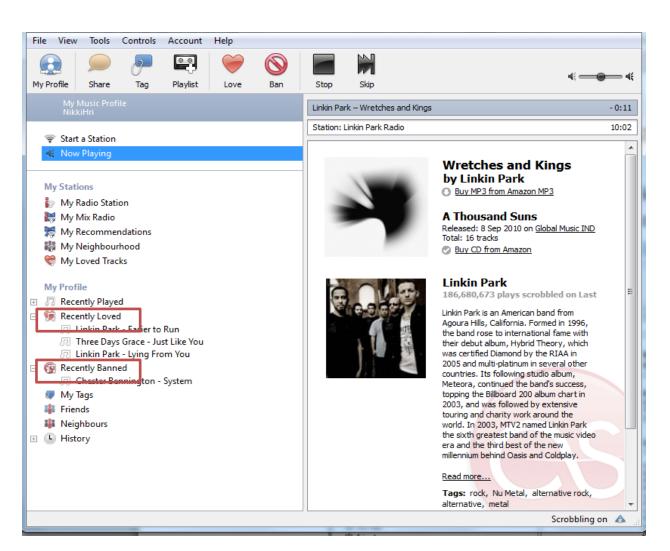
Inferring Latent Contexts From Sequences of User Interactions

• Assumptions:

- Users' interest on items is revealed sequentially
 - sequence of songs listened in a current playing session;
 - sequence of Web pages visited, etc.
- Context is not explicit, but must be inferred from the activity of the users as they interact with the system
- Example Domain: Music Recommendation
- Context may depend on many factors
 - Types of user activity (exercising, relaxing, driving, dancing)
 - User's moods or emotional states
 - Occasion or social setting

User Interactions

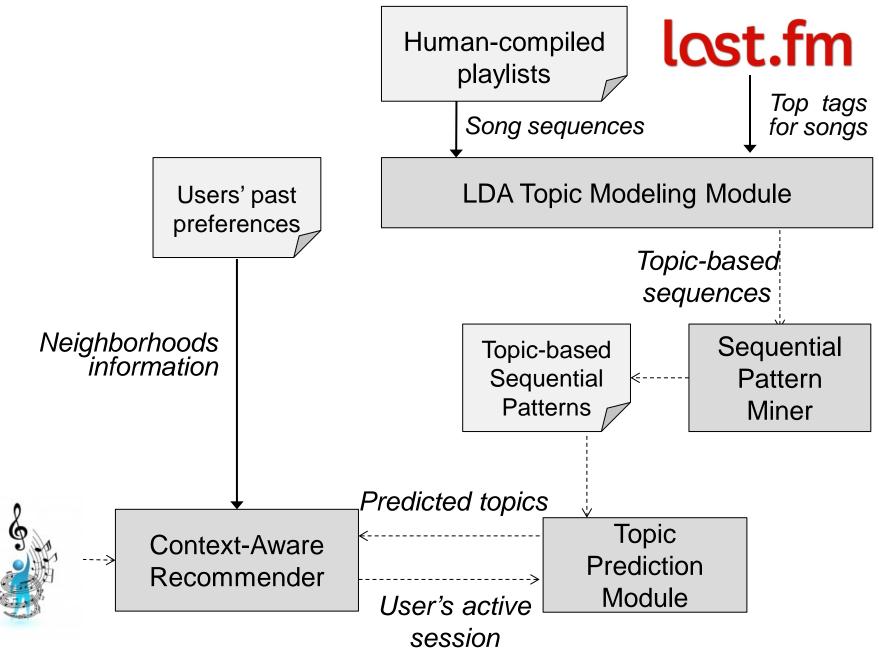
Context is reflected in the sequence of songs liked/disliked or played by the user in her current interaction with the system



Example Usage Scenario: Playlist Generation

- 1. The user selects an initial sequence of songs for the playlist.
- 2. The system *infers* user's context and recommends a set of songs.
- 3. The user adds one of the recommendations (or a new song outside the recommendation set) to the playlist
- 4. The system updates its knowledge about the user's preferences before the next interaction

(stat	📃 Far Away		
the state	nickleback		T
			-
U	00:00		00:00
#	Title	Artist	
1	In The End - Linkin Park	Linkin Park	2
2	Faint	Linkin Park	2
3	More Distubed	Disturbed and Linkin Park	0 0 0 0
4	everybody's fool	Evanessence	•
5	Call Me When You're Sober	Evanessence	0
	Far Away	nickleback	x
lı p	laylist.com		> EMBED



Topic Modeling for Song Context Representation

- LDA topic modeling to map user's interaction sequence to a sequence of latent topics
 - Better at capturing more general trends in user's interests
- The latent topics are generated from the top most frequent tags associated with songs
 - Tags obtained from social tagging Web sites (e.g., last.fm)
 - Tags characterize song features, user's situation, mood, etc.
 - For LDA, songs are taken as documents and tags as words
 - After fitting the topic model for K topics, the probability distribution over topics can be inferred for any given song
 - For each song, a set of most dominant topics are selected

Top Most Frequent Tags for a Sample of Topics

Topic#1	Topic#2	Topic#3	Topic#4	Topic#5	Topic#6	Topic#7
ambient	latin	death	60s	chill	beautiful	electronic
instrumental	world	thrash	oldies	downtempo	sad	electronica
soundtrack	streamable	black	roll	chillout	mellow	house
classical	spanish	heavy	50s	christmas	melancholy	techno
beautiful	para	doom	rockabilly	lounge	acoustic	tranc
age	bossa	brutal	top	electronic	chill	electro
chillout	fusion	melodic	500	trip-hop	soft	bass
experimental	musica	california	radio	electronica	slow	drum
movie	que	power	rolling	trip	melancholic	ambient
atmospheric	nova	progressive	1960s	ambient	favourite	beat
world	brazilian	gods	rhythm	hop	chillout	idm
ethereal	african	seixas	time	easy	ballad	experimental
chill	party	speed	elvis	cool	singer-	club
					songwriter	
calm	brasil	swedish	soundtrack	sexy	life	minimal
electronic	espanol	old	american	radio	easy	party

An Example Playlist (Mapped to Tags and Topics)

Time	Popular Tags	Dominant Topics
1	Singer-songwriter, mellow, relaxing, chill, male vocalist, easy listening, acoustic, 00's, guitar, rock, happy	6
2	Singer-songwriter, chill, acoustic, mellow, rock, summer, surf, male vocalist, pop, relaxing, guitar, happy	6
3	singer,-songwriter, indie rock, folk, acoustic, mellow, chill out, relaxing, bittersweet, lo-fi	6, 20, 23
4	Alternative rock, ballads, calm, beautiful, nice, soundtrack, favorites	6, 28
5	Electronic, electronica, French, chill out, trip-hop, ambient, down-tempo, sexy, 90s, alternative, easy listening, guitar, mellow, relax, female vocal	7, 5
6	Soundtrack, 90s, alternative, atmospheric, female vocalist, indie, dreamy	23
7	Singer-songwriter, acoustic, chill, alternative, rock, male vocalist, easy listening, driving	6, 25
8	Cover, Beatles cover, rock, 90s, soundtrack, brass , pop rock, alternative, rock, folk, brass	30, 18
9	Indie, rock, acoustic, 90s, cover, mellow, pop, folk, dreamy, singer- songwriter, sad-core, summery, sweet, alternative rock, female vocalist	6, 20

An Example Playlist – Resulting Topic Sequences

• **Topic-based representation of the active session:** $h = \langle \langle 6 \rangle \langle 6 \rangle \langle 20, 23 \rangle \langle 6, 28 \rangle \langle 7, 5 \rangle \langle 23 \rangle \langle 6, 25 \rangle$

<30, 18> <6, 20>>

 Assuming selected dominant topics for each song are independent, the active session is broken down into multiple sequences

Sequential Pattern Mining and Topic Prediction

- Using a training set of playlists, sequential patterns are mined over the set of corresponding latent topic sequences
 - Each pattern represents a frequent sequence of transitions between topics/contexts
 - Given a user's current interaction (the sequence of last w songs in the playlist), the discovered patterns are used to predict the context for the next song

Why Topic Level Aggregation?

- Mining SPs on topics instead of songs is useful in capturing user interests based on common characteristics of the current context
- Makes it easier to track and detect changes in the users' preferences due to changes in contextual states
- Topic-based patterns are useful in managing the cold start problem: a new songs may still match topic-based patterns

Song Recommendation Based on Contextual Postfiltering

The predicted topics are used to contextualize the recommendations

$$contextScore(h_u, s) = \frac{\sum_{t_i \in predictedTopics(h_u)} p(t_i|s)}{|predictedTopics(h_u)|}$$

- ContextScore(h_u , s) represents the suitability of song s for the current context of user u (determined based on user's active session, h_u)
- Next, recommendations are re-ranked using the contextual information
 - Prediction score for a song s: a linear combination of CF predicted rating and the context score for s.

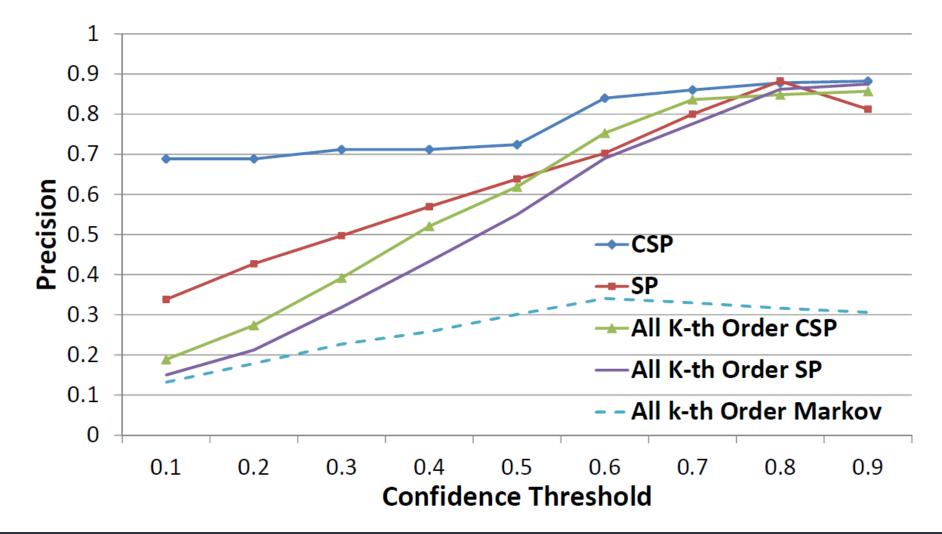
Evaluation

• Dataset and Methodology:

- 28,963 user-contributed playlists from Art of the Mix website in January 2003
- This dataset consists of 218,261 distinct songs for 48,169 distinct artists
- Top tags were retrieved from the last.fm website for about 71,600 songs in our database
- 48K songs with min. of 5 tags were used to build a 30topic LDA model
- The last w = 7 songs were selected as the user's active session, the last song was removed and the dominant topics associated with that song were used as target set

Topic Prediction Precision

(Playlist from Art of the Mix; Tags from last.fm)



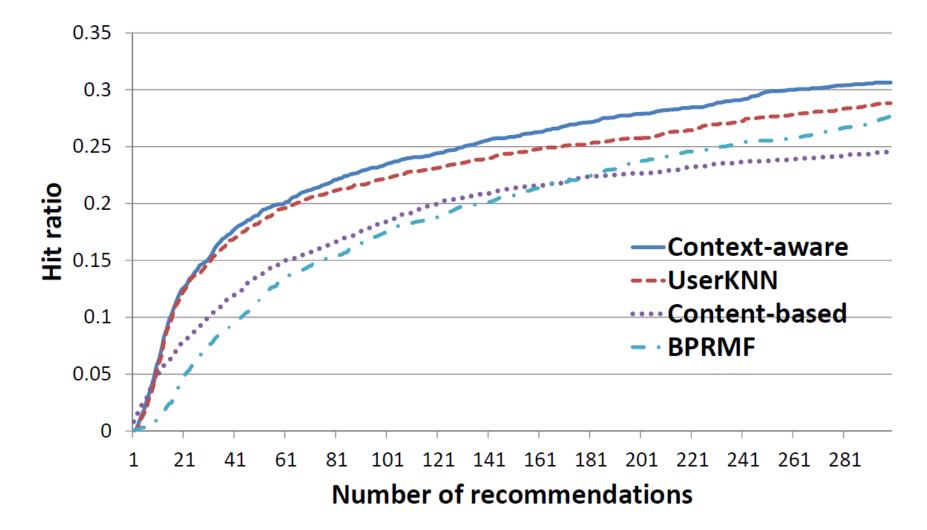
Baseline Algorithms for Evaluation

- User-based kNN
- Content-based recommender
 - Attributes: artist, genre, era, and album
 - similarity of two songs calculated as the cosine similarity of their attribute vectors
 - Item-based kNN used to generate recommendations

• BPRMF (Bayesian Personalized Ranking Matrix Factorization)

- Uses ranked pairs as training examples, so it optimizes for ranking rather than predicting a score
- Avoids the problem of learning from only positive examples

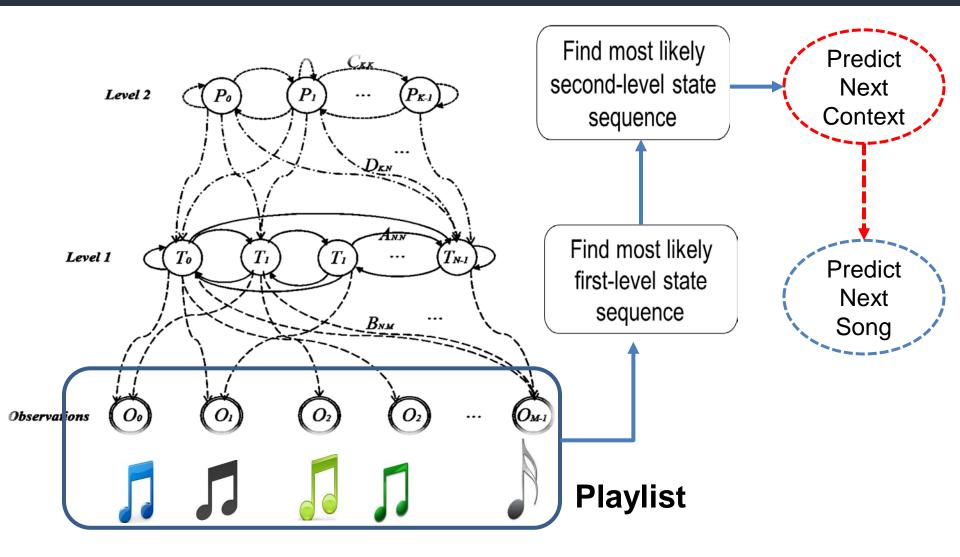
Song Recommendation Performance



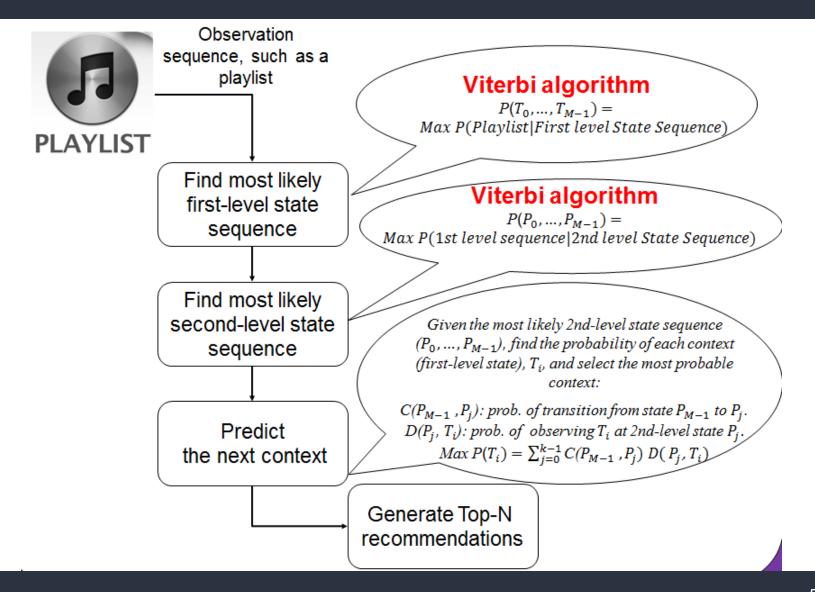
Another Approach: Hierarchical Hidden Markov Models

- Use HHMM to learn common transitions between contextual states
- The model is used to predict the context for the next interaction with a user
- The predicted context is used to tailor the recommendations to match user's current interests
- Pedigree: Interactional context; Dynamic or partially dynamic environment; Unobservable context information

Recommendation Using a HHMM



Recommendation Using a HHMM



Data Set

- Users' listening activities for 5 months collected from Last.fm
 - Time-stamped sequence of artists
 - Training: first four months
 - Last month for evaluation
 - 837 users with at least one artist in the test and train partitions; Test data: 462 users
 - 51759 unique artists

Results

	Top 5		Top 10			
Method	Precision	Recall	F-Measure	Precision	Recall	F-Measure
HHMM	0.3272	0.00655	0.01284	0.27995	0.01125	0.02163
HMM	0.3644	0.0054	0.01064	0.3228	0.0102	0.01977
Sequential Pattern Mining	0.1036	3.56E-05	7.12 E-05	0.0812	3.63E-05	7.26E-05
Item-based Markov Modeling	0.0342	8.69E-05	1.73E-04	0.0281	1.23E-04	2.45E-04
User-Based kNN	0.0350	0.0035	6.36E-03	0.0297	0.007	1.13E-02
BPRMF	0.0273	0.0047	8.02E-03	0.0247	0.006	9.65E-03
Most Popular	0.02188	0.006	9.42E-03	0.0179	0.008	1.11E-02
Random	0.0004	5.74E-06	1.13E-05	0.0004	2.76E-05	5.16E-05

HHMM has the highest recall and achieves the best overall F-score.

Popularity Bias

The items were sorted based on their overall frequencies in users profiles and grouped into I = 10 bins.



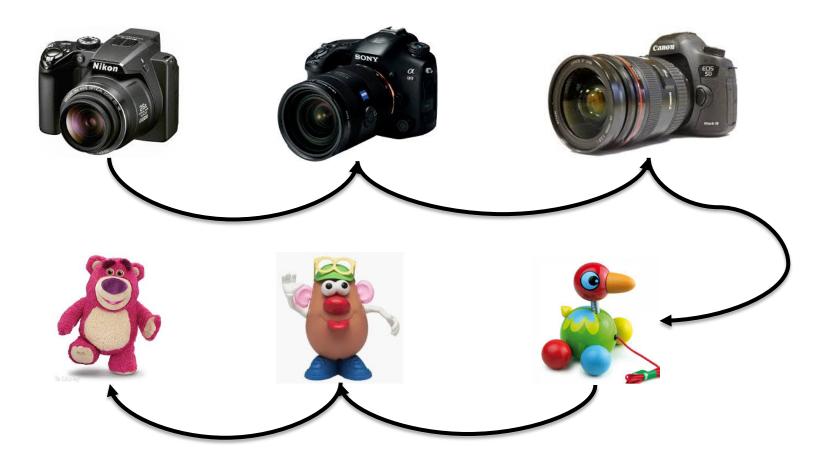
Highlighted Approach

Context Adaptation in Interactive Recommendation

Pedigree:

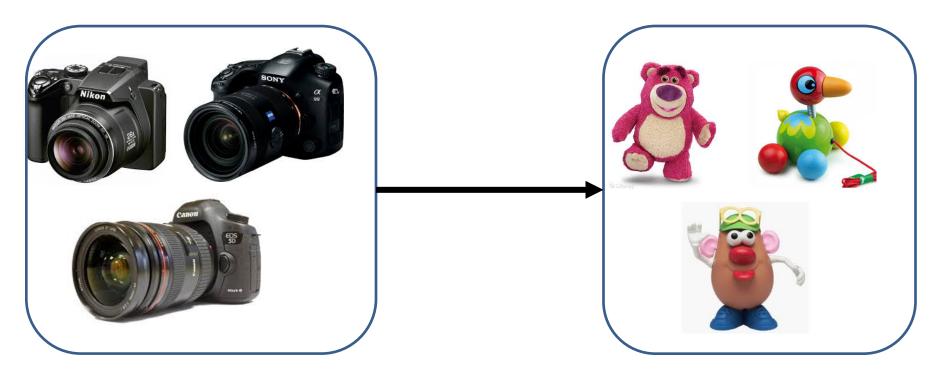
- Interactional context
- Fully dynamic environment
- Unobservable context

Problem: Change of Context



New Context = New Utility Function

Detecting Context Changes

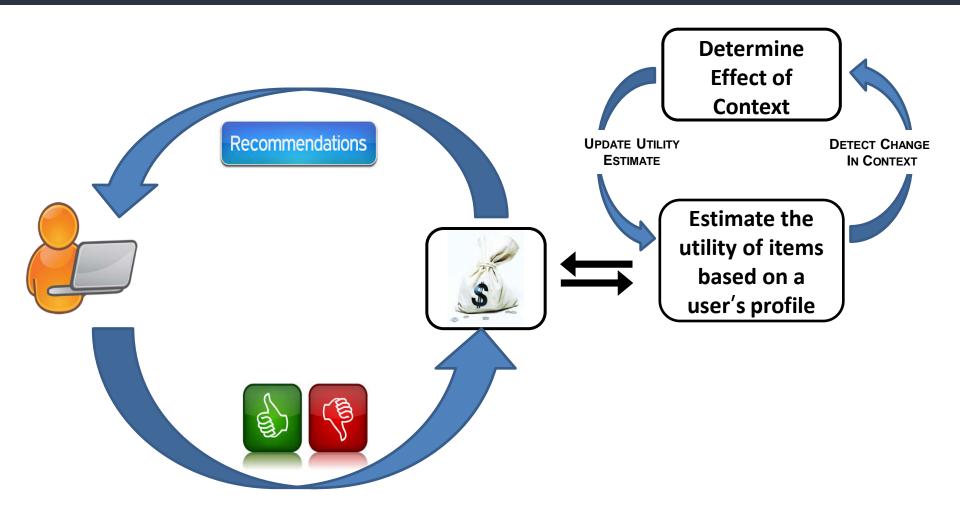


Context 1

Context 2

How do we infer hidden context or change of context?

Interactive Recommendation Scenario



Maximizing the Utility

Maximizing the utility for each step

- Recommendation = highest estimated expected utility
- Reward = rating from user (or, item selection, clickthrough, etc.)
- Maximizing reward over the interaction session
 - Exploitation: choose the most profitable item
 - Exploration: choose other items to acquire more information (preferences, context)
 - Must trade off these behaviors

Multi-armed Bandit Algorithms

Idea

- Different choices (items) obtain different rewards
- Sample different items to find best reward
- Consider total reward over limited interactions

For recommendation

- Set of arms-> representation of candidate items
- Rewards-> Users' feedbacks (e.g., ratings or click-through on recommended items)

Solution approaches

- E-greedy approach
- Upper Confidence Bound (UCB) algorithms
- Thompson Sampling

Adapting Thompson Sampling

Items ≠ Arms

- A item can be recommended only once per user

Describe items by features

- Features constant during the interaction
- Combination of collaborative and content-based data

Create reduced dimensionality representation

- Use PCA to represent each item in a k-dimensional space
- Each "arm" is a point in this space
 - recommend items near that point

Thompson Sampling

- Item selected based on its probability of optimality
- Parameter θ characterizes the utility (reward) distribution
- $E_r(r|a, \theta)$: expected reward for item *a* for the given θ

$$D=\emptyset$$

for $t = 1$ to T do
Draw $\theta^t \sim P(\theta|D)$
Select $a_t = argmax E_r(r|a, \theta^t)$
Observe reward r_t
 $D = D \cup (a_t, r_t)$
end for

Assumptions

Theta Distribution

- $-\theta$ is drawn from an multivariate normal distribution
 - user's preference function
 - location μ , covariance Σ
 - $\mathcal{N}(\mu_t, \Sigma_t)$
- Linearity
 - Expected reward is a linear function of the item features

$$-r_x = f_x \cdot \theta$$

• Reward distribution $P(r|\theta, a)$

– linear transform of the θ distribution

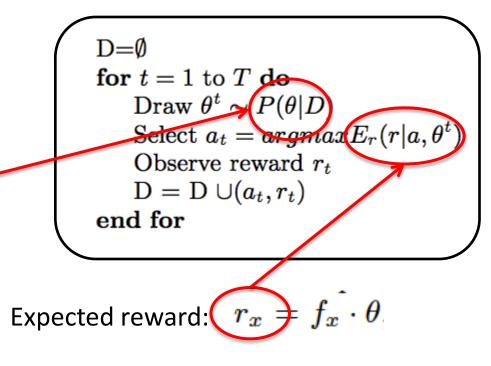
Updating the User Model

 Prior and likelihood distributions:

 $p(heta) = \mathcal{N}(heta; \mu_{ heta}, \Sigma_{ heta})
onumber \ p(r| heta) = \mathcal{N}(r; F heta, \Sigma_r)$

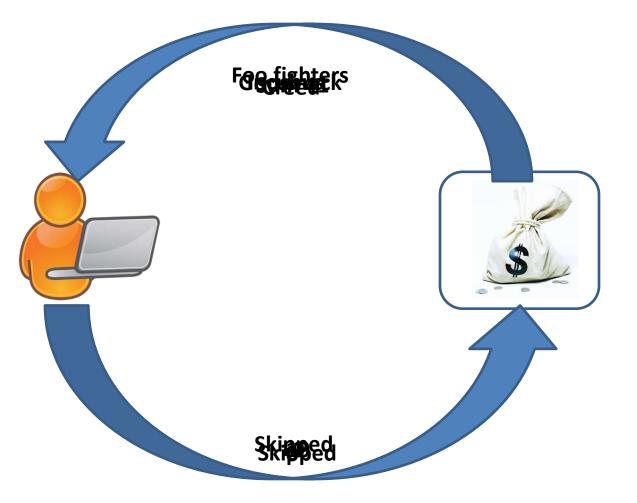
 Given a linear Gaussian system, the posterior is computed as follows:

$$p(heta|r) = \mathcal{N}(\mu_{ heta|r}, \Sigma_{ heta|r})$$
 $\Sigma_{ heta|r}^{-1} = \Sigma_{ heta}^{-1} + F^T \Sigma_r^{-1} F$
 $\mu_{ heta|r} = \Sigma_{ heta|r} [F^T \Sigma_r^{-1}(r) + \Sigma_{ heta}^{-1} \mu_{ heta}]$

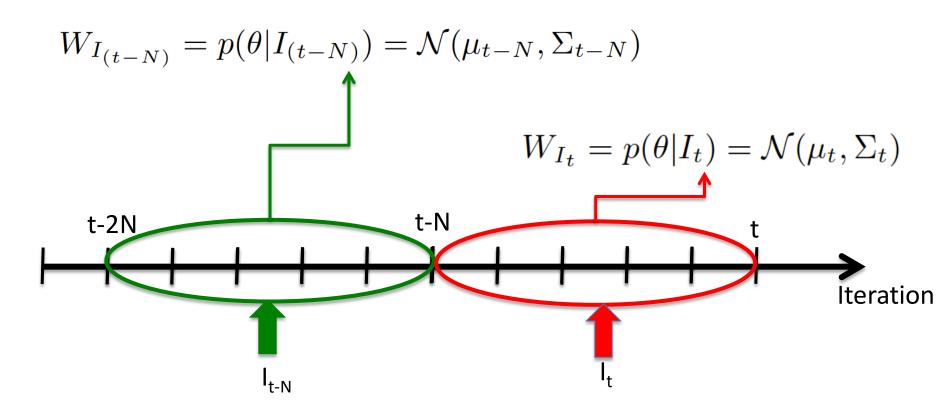


Change of Context

Artist	Score	
Linkin park		
Staind	100	
Metallica	90	
Green Day	90	
Simple Plan	Skipped	
Papa Roach	90	
Nirvana	90	
Foo fighters	0	
Creed	Skipped	
Sum 41	10	
Incubus	0	
Godsmack	Skipped	



Change Detection



Measure distance between two distribution: KL-divergence; Mahalanobis distance; Etc.

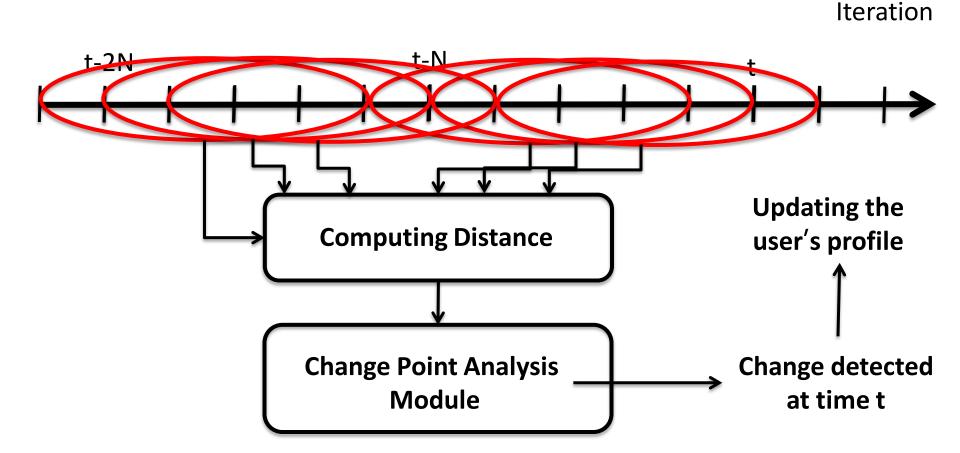
Detect Distribution Changes

$$W_{I_{(t-N)}} = \mathcal{N}(\mu_{t-N}, \Sigma_{t-N}) \qquad W_{I_t} = \mathcal{N}(\mu_t, \Sigma_t)$$
$$\Sigma = \frac{\Sigma_t + \Sigma_{t-N}}{2}$$
$$distance = (\mu_t - \mu_{t-N})^T \Sigma^{-1} (\mu_t - \mu_{t-N})$$

How to measure distance between two distributions

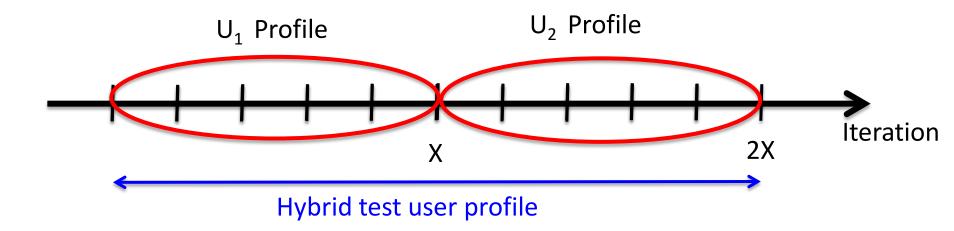
- KL-divergence
- Mahalanobis distance
- others

Sliding Window



Evaluation

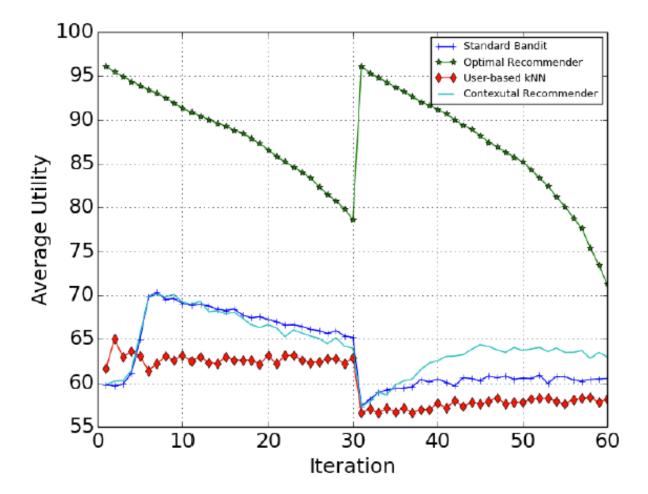
- Simulating the change in a user's behavior:
 - Generating a hybrid user profile by switching between two random users in the test data.



- Yahoo! Music ratings of musical artists version 1.0.
 - ~10M ratings of musical artists over the course of one month
 - ~2M users, ~100k artists.
 - Ratings: 0 to 100
- 5-fold cross validation
- Evaluation metric: Average obtained utility
 - user's rating for each recommended item = utility

Results

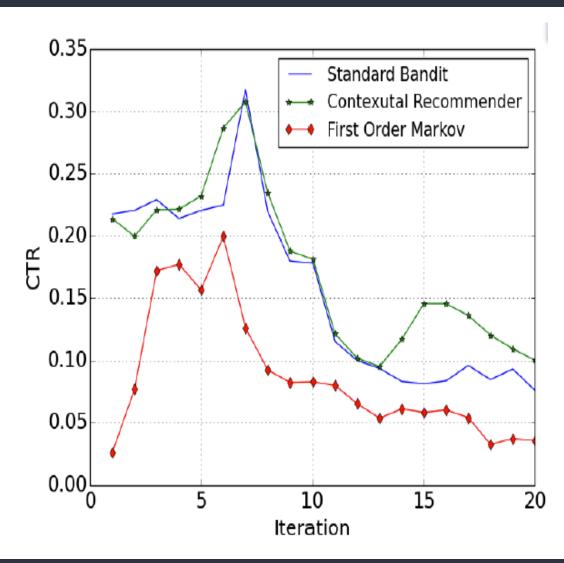
- 60 iterations
- Simulated change at iteration 30



Results 2

CTI Data

- Server log data from the CS department at DePaul university
- After pre-processing:
 5319 users, and 2453
 distinct pageviews
- Number of Iterations: 20
- Simulated change occurs at iteration 10



Findings

Thompson sampling

effective implementation of interactive recommendations

Context-sensitivity

 Change detection enables recommender to recover more quickly when there is a new context

Future Work

- Integrating short- and long-term modeling
 - current study: context change is cold-start
- Characterize items/users using information about domain or users

Realistic data set

- current study: context change is artificial
 - grafting two different users' playlists
- user study

Questions

